Electric heating is any process in which electrical energy is converted to heat. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical appliance that converts electrical energy into heat. The heating element inside every electric heater is simply an electrical resistor, and works on the principle of Joule heating: an electric current through a resistor converts electrical energy into heat energy.
Alternatively, a heat pump uses an electric motor to drive a refrigeration cycle, drawing energy from a source such as the ground or outside air and directing it into the space to be warmed. Some systems can be reversed so that the interior space is cooled and the warm air is discharged outside or into the ground. Heat pumps can deliver two or three units of heating energy for every unit of electricity purchased. For a detailed explanation of heat pumps please see Carnot cycle.
Contents |
Although they all use the same physical principle to generate heat, electric heaters differ in the way they deliver that hot air to the environment. Several types are described in the sections below.
Radiative heaters contain a heating element that reaches a high temperature. The element is usually packaged inside a glass envelope resembling a light bulb and with a reflector to direct the energy output away from the body of the heater. The element emits infrared radiation that travels through air or space until it hits an absorbing surface, where it is partially converted to heat and partially reflected. This heat directly warms people and objects in the room, rather than warming the air. This style of heater is particularly useful in areas which unheated air flows through. They are also ideal for basements and garages where spot heating is desired. More generally, they are an excellent choice for task-specific heating.
Radiative heaters operate silently and present the greatest potential danger to ignite nearby furnishings due to the focused intensity of their output and lack of overheat protection. In the United Kingdom, these appliances are sometimes called electric fires, because they were originally used to replace open fires.
In a convection heater, the heating element heats the air next to it by convection. Hot air is less dense than cool air, so it rises due to buoyancy, allowing more cool air to flow in to take its place. This sets up a constant current of hot air that leaves the appliance through vent holes and heats up the surrounding space. They are ideally suited for heating a closed space. They operate silently and have a lower risk of ignition hazard in the event that they make unintended contact with furnishings compared to radiant electric heaters. This is a good choice for long periods of time or if left unattended. They are very safe heaters and there is a very low chance of getting burned.
A fan heater, also called a forced convection heater, is a variety of convection heater that includes an electric fan to speed up the airflow. This reduces the thermal resistance between the heating element and the surroundings faster than passive convection, allowing heat to be transferred more quickly.
They operate with considerable noise caused by the fan. They have a moderate risk of ignition hazard in the event that they make unintended contact with furnishings. This type of heater is a good choice for quick heating of enclosed spaces.
A storage heating system takes advantage of cheaper electricity prices, sold during low demand periods such as overnight. In the United Kingdom, this is branded as Economy 7. The storage heater stores heat in clay bricks, then releases it during the day when required.
These systems are called radiant heating systems, regardless of whether they include a heat exchanger (also called a radiator) or are electrically powered.
When a home radiant heat system is turned on, current flows through a conductive heating material. For high-voltage radiant heat systems, line voltage (110 V or 230 V) current flows through the heating cable. For low-voltage systems, the line voltage is converted to extra low voltage (8 to 30 V) in the control unit (which contains a step-down transformer) and this low voltage is then applied to the heating element.
The heated material then heats the flooring until it reaches the right temperature set by the floor thermostat. The flooring then heats the adjacent air, which circulates, heating other objects in the room (tables, chairs, people) by convection. As it rises, the heated air will heat the room and all its contents up to the ceiling. This form of heating gives the most consistent room temperature from floor to ceiling compared to any other heating system.
A heat pump uses an electrically-driven compressor to operate a refrigeration cycle that extracts heat energy from the outdoor air or from the ground or ground water, and upgrades its temperature to a level high enough to use for space heating. The working fluid boils at a low temperature, absorbing heat in an outdoor heat exchanger, then the resulting vapor is compressed and condenses to liquid form in a condensor inside the building. Heat from the condensor is absorbed by the air in the building (and sometimes also used for domestic hot water). In the summer months the cycle can be reversed to provide air conditioning. Heat pumps may obtain low-grade heat from the outdoor air in mild climates; in areas with average winter temperatures well below freezing, ground source heat pumps extract residual heat stored in the ground at a more constant temperature.
Water heating by electricity is usually done by an immersion heater mounted in the top of the hot water cylinder. The heater contains an insulated electric resistance heater and a temperature sensor. Domestic immersion heaters (usually rated at 3 kilowatts in the UK) run on the normal domestic electricity supply. Electric shower and tankless heater also use a immersion heater shielded or naked which is turned on by the water passing and turned off when the tap is closed. A group of heaters working each one or together provide different heating levels. Electric showers and tankless heaters usually have since 3 kilowatts to 7.5 kilowatts according the voltage supply. Industrial immersion heaters (such as those used in electric steam boilers) may be rated at 100 kilowatts, or more, and run on a three-phase supply.
With an electrode heater, there is no wire-wound resistance and the liquid itself acts as the resistance. This has potential hazards so the regulations governing electrode heaters are strict.
The electrical energy is converted into work known as heating and creates an energy difference, either heating or cooling. The overall efficiency of any heating or cooling system is given by the Carnot cycle. While it is true that electrical heating loses very little energy to other sources such as chemical reactions, as is the case with oil or gas heating, the system is limited by the temperature difference being created. A more detailed explanation can be found on thermodynamics or the Carnot cycle.
Apart from the theoretical aspects, one can assume if the power plant supplying electricity is included, the overall efficiency drops. For example, a fossil-fuelled power plant may only deliver 4 units of electrical energy for every 10 units of fuel energy released. Even with a 100% efficient electric heater, the amount of fuel needed for a given amount of heat is more than if the fuel was burned in a furnace or boiler at the building being heated. If the same fuel could be used for space heating by a consumer, it would be more efficient overall to burn the fuel at the end user's building.
In Sweden the use of direct electric heating has been restricted since the 1980s for this reason, and there are plans to phase it out entirely - see Oil phase-out in Sweden - while Denmark has banned the installation of electric space heating in new buildings for similar reasons.[1] In the case of new buildings, low-energy building techniques can be used which can virtually eliminate the need for heating, such as those built to the Passivhaus standard.
In Quebec however, electric heating is still the most popular form of home heating. According to a 2003 Statistics Canada survey, 68% of households in the province uses electricity for space heating. This can be explained by the fact that more than 90% of all power consumed in Quebec is generated by hydroelectric dams, which have lower greenhouse gases emissions than thermal power stations and the low and stable rates charged by Hydro-Québec, the provincially-owned utility.[2]
In order to provide heat more efficiently, an electrically driven heat pump can raise the indoor temperature by extracting energy from the ground, the outside air, or waste streams such as exhaust air. This can cut the electricity consumption to as little as 20% of that used by resistive heating and thus reduce the environmental impact.
Electrical space heating can still be economic where electricity supplies are low-cost. Where the primary source of electrical energy is hydroelectric, nuclear, wind, or other carbon-free source, it may not be practical to exploit that resource directly in heating applications but grid electricity can be conveniently used. Electric space heating is useful in places where air-handling is difficult, such as in laboratories.
Doctors recommend electrical space heating for families with a member suffering from multiple chemical sensitivity, because electricity is the only form of domestic energy that is totally free from indoor domestic pollution. Patients suffering from multiple chemical sensitivity react severely to the very small amounts of indoor pollution coming from any heater using fossil fuels, which are otherwise neutral for healthy people.
The operation of electric resistance heaters to heat an area for a long period of time is generally considered to be costly. However, intermittent or partial day use can be more cost efficient than whole building heating due to superior zonal control.
Example: A lunch room in an office setting has limited hours of operation. During low use periods a "monitor" level of heat (50 °F/10 °C) is provided by the central heating system. Peak use times between the hours of 11:00–14:00 are heated to "comfort levels" (70 °F/21 °C). Significant savings can be realized in overall energy consumption since infrared radiation losses through thermal radiation are not as large with a smaller temperature gradient both between this space and unheated outside air as well as between the refrigerator and the (now cooler) lunch room.
Economically, electric heat can be compared to other sources of home heating by multiplying the cost per kilowatt hour by the number of kilowatts the heater uses.[3]
Electric heating is widely used in industry.[4]
Advantages of electric heating methods over other forms include precision control of temperature and distribution of heat energy, combustion not used to develop heat, and the ability to attain temperatures not readily achievable with chemical combustion. Electric heat can be accurately applied at the precise point needed in a process, at high concentration of power per unit area or volume. Electric heating apparatus can be built in any required size and can be located anywhere within a plant. Electric heating processes are generally clean, quiet, and do not emit much byproduct heat to the surroundings. Electrical heating equipment has a high speed of response, lending it to rapid-cycling mass-production equipment.
The limitations and disadvantages of electric heating in industry include the higher cost of electrical energy compared to direct use of fuel, and the capital cost of both the electric heating apparatus itself and the infrastructure required to deliver large quantities of electrical energy to the point of use. This may be somewhat offset by efficiency gains in using less energy overall to achieve the same result.
Design of an industrial heating system starts with assessment of the temperature required, the amount of heat required, and the feasible modes of transferring heat energy. In addition to conduction, convection and radiation, electrical heating methods can use electric and magnetic fields to heat material.
Methods of electric heating include resistance heating, electric arc heating, induction heating, and dielectric heating. In some processes (for example, arc welding), electric current is directly applied to the workpiece. In other processes, heat is produced within the workpiece by induction or dielectric losses. As well, heat can be produced then transferred to the work by conduction, convection or radiation.
Industrial heating processes can be broadly categorized as low-temperature (to about 400 °C (730 °F)), medium temperature (between 400 °C and 1150 °C (730-2100 °F)), and high temperature (beyond 1150 °C (2100 °F)). Low temperature processes include, baking and drying, curing finishes, soldering, molding and shaping plastics. Medium temperature processes include melting plastics and some non-metals for casting or reshaping, as well as annealing, stress-relieving and heat-treating metals. High-temperature processes include steelmaking, brazing, welding, casting metals, cutting, smelting and the preparation of some chemicals.